30/07/2014

A Equação do Número Prateado

Neste post veremos como encontrar a equação do número de prata, utilizando para isso proporções no retângulo prateado.

Definição $1$: O número prateado ou número de prata, ou ainda razão prateada, é uma constante irracional simbolizada por $\delta_S$ e numericamente vale:
\begin{equation}
\delta_S=1+\sqrt{2}
\end{equation}
Definição $2$: Um retângulo prateado é aquele cuja razão entre dois de seus lados adjacentes seja igual ao número prateado. Assim, tomando um retângulo de lados iguais a $AB$ e $AD$, a razão:
\begin{equation}
\frac{AB}{AD}=\delta_S=1+\sqrt{2}
\end{equation}
Partindo da construção geométrica do retângulo prateado, podemos deduzir a equação do número prateado. Considere o retângulo da figura acima. Pela definição de retângulo prateado, temos que a razão de prata é dada por:
\begin{equation}
\delta_S=\frac{AB}{AD}
\end{equation}
Usando semelhança de trângulos entre os retângulos $ABCD$ e $EBCF$, podemos deduzir que:
\begin{equation}
\frac{AD}{AB}=\frac{BE}{BC}
\end{equation}
No entanto, $BE=AB-2AD$, já que $AE=2AD$, e também $BC=AD$. Assim, podemos fazer estas substituições em $(4)$, obtendo:
\begin{equation}
\frac{AD}{AB}=\frac{AB-2AD}{AD}
\end{equation}
Mas, pela relação $(3)$, temos que $\delta_S=AB/AD$, e seu inverso será $\displaystyle \frac{1}{\delta_S}=\frac{AD}{AB}$. Assim:
\begin{equation}
\begin{matrix}
\frac{1}{\delta_S}=\frac{AB-2AD}{AD}\\
\frac{1}{\delta_S}=\frac{AB}{AD}-\frac{2AD}{AD}\\
\frac{1}{\delta_S}=\delta_S-2
\end{matrix}
\end{equation}
Multiplicando ambos os lados da equação por $\delta_S$ para eliminar o denominador:
\begin{equation}
1=\delta_S^2-2\delta_S
\end{equation}
E assim obtemos:
\begin{equation}
\delta_S^2-2\delta_S-1=0
\end{equation}
A equação obtida em $(8)$ é a equação do Número prateado. Podemos resolver esta equação utilizando a fórmula para a equação de segundo grau:
\begin{equation}
\begin{matrix}
\delta_S=\frac{2\pm \sqrt{8}}{2}\\
\delta_{S_1}=1+\sqrt{2}\\
\delta_{S_2}=1-\sqrt{2}
\end{matrix}
\end{equation}
Tomamos então a raiz positiva: $\delta_S=1+\sqrt{2}$ como solução da equação, encontrando o número prateado.

Veja mais: 

O Número Prateado
O Retângulo Prateado
O Número Prateado na Trigonometria
O Número Prateado e a Área do Octógono Regular
Algumas Propriedades do Número Prateado no blog Fatos Matemáticos

26/07/2014

Resolução da Integral $\int \frac{1}{(x^2-1)^2}dx$

Integrais por frações parciais às vezes podem ser complicadas de serem resolvidas. Às vezes é mais complicado encontrar as frações parciais equivalente ao integrando do que resolver as integrais obtidas após este processo. Este é um exemplo interessante porque além de trabalharmos com métodos de integração, utilizamos o método de eliminação de Gauss na resolução do sistema linear que geram as frações parciais. Veremos passo a passo cada etapa desta resolução.

Seja a integral:
\begin{equation}
\int \frac{1}{(x^2-1)^2}dx=I
\end{equation}
Sugiro a leitura do artigo sobre o método de integração por frações parciais. Primeiramente, fatoramos o denominador do integrando:
\begin{equation}
I = \int \frac{1}{(x^2-1)(x^2-1)}dx = \int \frac{1}{(x+1)(x-1)(x+1)(x-1)}dx
\end{equation}
Como há fatores lineares no denominador e eles se repetem, este é o segundo caso do método para denominadores lineares. Vejam o o artigo aqui. O integrando deve ser:
\begin{equation}
\frac{1}{(x+1)^2(x-1)^2}=\frac{A}{(x+1)}+\frac{B}{(x+1)^2}+\frac{C}{(x-1)}+\frac{D}{(x-1)^2}
\end{equation}
 Eliminando o denominador, obtemos:
\begin{equation*}
1=A(x+1)(x-1)^2+B(x-1)^2+C(x-1)(x+1)^2+D(x+1)^2
\end{equation*}
Aplicando a distributiva:
\begin{equation*}
1=Ax^3-Ax^2-Ax+A+Bx^2-2Bx+B+Cx^3+Cx^2-Cx-C+Dx^2+2Dx+D
\end{equation*}
Fatorando as potências:
\begin{equation*}
1=x^3(A+C)+x^2(-A+B+C+D)+x(-A-2B-C+2D+A+B-C+D
\end{equation*}
Agora, igualamos os coeficientes dos dois membros da relação, obtendo o sistema linear:
\begin{equation}
\left\{\begin{matrix}
-A & +B & +C & +D &=0\\
-A & -2B & -C &+2D &=0 \\
A & +B & -C & +D &=1\\
A &  & +C & &=0
\end{matrix}\right.
\end{equation}
Para resolver este sistema, utilizaremos o Método de Eliminação de Gauss (escalonamento), deixando o sistema triangular superior. Para eliminar o termo que contém $A$ da segunda equação, somamo-a à primeira equação multiplicada por $-1$; Para eliminar o termo que contém $A$ da terceira equação, basta somarmos com a primeira equação; E o mesmo ocorre com a quarta equação. Então obtemos:
\begin{equation}
\left\{\begin{matrix}
-A & +B & +C & +D &=0\\
 & -3B & -2C & +D &=0 \\
 & +2B &  & +2D &=1\\
 & B & +2C & D&=0
\end{matrix}\right.
\end{equation}
Para facilitar o escalonamento, utilizaremos as propriedades, trocando a quarta pela segunda equação, e a segunda pela terceira equação:
\begin{equation}
\left\{\begin{matrix}
-A & +B & +C & +D &=0\\
 & B & +2C & D&=0\\
 & -3B & -2C & +D &=0 \\
 & +2B &  & +2D &=1\\
\end{matrix}\right.
\end{equation}
Para eliminarmos o termo que contém $B$ da terceira e quarta equações, somamos a terceira equação com a segunda multiplicada por $3$; e somamos a quarta equação com a segunda multiplicada por $-2$. Obtemos:
\begin{equation}
\left\{\begin{matrix}
-A & +B & +C & +D &=0\\
 & B & +2C & D&=0\\
 &  & 4C & +4D &=0 \\
 &  & -4C &  &=1\\
\end{matrix}\right.
\end{equation}
Temos imediatamente que $C=-1/4$. Substituindo $C$ na terceira equação, obtemos $D=1/4$. Substituindo $C$ e $D$ na segunda equação, obtemos $B=1/4$. Finalmente, substituindo $B$, $C$ e $D$ na primeira equação, obtemos $A=1/4$. Agora já temos condições de substituir estes valores nas frações parciais :
\begin{equation}
I=\int \left( \frac{1}{4(x+1)}+\frac{1}{4(x+1)^2}-\frac{1}{4(x-1)}+\frac{1}{4(x-1)^2}\right) dx
\end{equation}
Integrando termo a termo:
\begin{equation}
I=\frac{1}{4}\int\frac{dx}{(x+1)}+\frac{1}{4}\int \frac{dx}{(x+1)^2}-\frac{1}{4}\int \frac{dx}{(x-1)}+\frac{1}{4}\int \frac{dx}{(x-1)^2}
\end{equation}
Para resolvermos cada uma das quatro integrais acima, utilizaremos o Método da Substituição. Fazemos:

$\bullet$ Para o integrando $\displaystyle \frac{1}{(x+1)}$, fazemos $u=x+1$ e $du=dx$;
$\bullet$ Para o integrando $\displaystyle \frac{1}{(x+1)^2}$, fazemos $v=x+1$ e $dv=dx$;
$\bullet$ Para o integrando $\displaystyle \frac{1}{(x-1)}$, fazemos $p=x-1$ e $dp=dx$;
$\bullet$ Para o integrando $\displaystyle \frac{1}{(x-1)^2}$, fazemos $w=x-1$ e $dw=dx$.

Substituindo em cada integral de  $(9)$, obtemos:
\begin{equation}
\begin{matrix}
I=\frac{1}{4}\int \frac{du}{u}+\frac{1}{4}\int \frac{dv}{v^2}-\frac{1}{4}\int \frac{dp}{p}+\frac{1}{4}\int \frac{dw}{x^2}\\
I=\frac{1}{4}\ln (u)-\frac{1}{4v}-\frac{1}{4}\ln(p) - \frac{1}{4w}+C\\
I=\frac{1}{4}\left[\ln(u)-\ln(p)-\frac{1}{v}-\frac{1}{w}\right]+C
\end{matrix}
\end{equation}
Substituindo $u$, $v$, $p$ e $w$:
\begin{equation}
\begin{matrix}
I=\frac{1}{4}\left[\ln(x+1)-\ln(x-1)-\frac{1}{x+1}-\frac{1}{x-1}\right]+C\\
I=\frac{1}{4}\left[\ln(x+1)-\ln(x-1)-\frac{(x-1)-(x+1)}{(x^2-1)}\right]+C\\
I=\frac{1}{4}\left[\ln \left(\frac{x+1}{x-1}\right)-\frac{2x}{(x^2-1)}\right]+C
\end{matrix}
\end{equation}

Veja mais

Integral por Substituição
Integral por Frações Parciais - Fatores Lineares
Integral por Frações Parciais - Fatores Quadráticos

09/07/2014

Integral de $\displaystyle \frac{\sqrt{16-x^2}}{4x^2}dx$

Às vezes surgem dúvidas de leitores que valem um post. A resolução desta integral é interessante e usa o método de substituição trigonométrica.

Seja a integral:
\begin{equation*}
\int \frac{\sqrt{16-x^2}}{4x^2}dx = I
\end{equation*}
Vejam o artigo sobre o método da substituição trigonométrica para resolução de certas integrais. Com o auxílio visual, analisemos o triângulo retângulo da figura acima.

Temos que $\displaystyle \text{sen}(\theta) = \frac{x}{4} \Rightarrow x=4 \text{sen}(\theta)$ e então $dx=4\cos (\theta) d \theta$. E ainda temos que $\displaystyle \sqrt{16-x^2} = 4 \cos (\theta)$.

Assim, a integral fica:
\begin{matrix}
I = \frac{1}{4} \int \frac{4\cos (\theta)}{16 \text{sen}^2 (\theta)}\cdot 4\cos (\theta) d \theta\\
I= \frac{1}{4} \int \frac{16 \cos^2 (\theta)}{16 \text{sen}^2 (\theta)}d \theta\\
I= \frac{1}{4} \int \text{cotg}^2 (\theta) d \theta
\end{matrix}
Da identidade trigonométrica $1+\text{cotg}^2(x)=\text{cossec}^2(x)$, temos que:
\begin{equation*}
I=\frac{1}{4} \int \left( \text{cossec}^2 (\theta)-1 \right) d \theta
\end{equation*}
Integrando termo a termo:
\begin{equation*}
I=\frac{1}{4} \int \text{cossec}^2 (\theta) d\theta - \frac{1}{4} \int 1 d\theta
\end{equation*}
A integral de $\text{cossec}^2 (\theta)$ é $-\text{cotg}(\theta)+C$. Assim:
\begin{equation*}
I=-\frac{1}{4} \cdot \text{cotg} (\theta) - \frac{1}{4} \cdot \theta + C = -\frac{1}{4}\left(\theta + \text{cotg}(\theta)\right) + C
\end{equation*}
Mas $\displaystyle \theta = \text{arcsen}\left(\frac{x}{4} \right)$ e $\displaystyle \text{cotg}(\theta) = \frac{\sqrt{16-x^2}}{x}$. Assim:
\begin{matrix}
I=-\frac{1}{4}\left( \text{arcsen}\left(\frac{x}{4}\right) + \frac{\sqrt{16-x^2}}{x}\right)+C\\
I=\int \frac{\sqrt{16-x^2}}{4x^2}dx=-\frac{x\ \text{arcsen}\left(\frac{x}{4}\right) + \sqrt{16-x^2}}{4x}+C
\end{matrix}

Veja mais:

Integração por Substituição Trigonométrica
Integração por Frações Parciais - Fatores Lineares
Integração por Frações Parciais - Fatores Quadráticos Irredutíveis

Redes Sociais

Arquivo do Blog