27/09/2014

Arcos de Circunferência

O bom entendimento sobre as medidas de ângulos em graus e em radianos é necessário para o estudo da circunferência trigonométrica para que possamos também trabalhar com ângulos que não sejam agudos e fazer um estudo mais geral e completo, preparando-se para o estudo das funções trigonométricas.


Introdução

Os ângulos aparecem nos registros da Grécia antiga associados ao estudo dos elementos de uma círculo, relacionados com arcos e cordas. As propriedades do ângulo central de uma circunferência eram conhecidas desde os tempo de Eudoxo (Astrônomo, matemático e filósofo grego do século $IVa.C.$), que teria usado medidas de ângulos em diversos cálculos, como a determinação das dimensões da Terra e a distância relativa entre o Sol e a Terra.

Acredita-se que os sumérios e os arcadinos $(3500a.C.)$ já sabiam medir ângulos.

Um dos primeiros astrônomos gregos a dividir o círculo em $360$ partes iguais foi Hipsicles (século $IIIa.C.$), talvez por acreditarem que a Terra leva cerca de $360$dias para completar sua translação em torno do Sol. Mas a hipótese mais provável é ter havido influência do sistema de numeração sexagesimal (base $60$), utilizado na Babilônia.

Comprimento de uma circunferência

Seja um círculo qualquer de centro $O$ e raio $r$. A borda desse círculo, ou seja, o contorno desse círculo é chamado de circunferência.

Se pudermos retificar essa circunferência, ou seja, transformá-la em um segmento de reta, este segmento teria o comprimento $C$ que seria o comprimento da própria circunferência. Veja aqui um exemplo de retificação da circunferência.

O comprimento $C$ da circunferência é dado por:
\begin{equation}
C=2\pi r
\end{equation}
onde $r$ é o raio da circunferência e $\pi$ é uma constante irracional, presente em toda circunferência e numericamente vale $3,1415$, aproximadamente. Veja aqui uma breve cronologia de $\pi$.

Medidas de arcos e ângulos

Sempre que quisermos medir alguma grandeza, usamos outra grandeza padrão como uma medida unitária e depois procuramos descobrir quantas vezes a grandeza a ser medida contém a grandeza padrão.

No caso de uma régua, existem versões com escalas em milímetros, outras em centímetros. As trenas possuem marcação de milímetros, centímetros e metros. Já o odômetro de um veículo, mede com precisão de $100$ metros.

Então, medida é a razão entre duas grandezas de mesma espécie.

Sendo assim, a medida de um arco de circunferência $\widehat{AB}$ é um número $\alpha$, não-negativo, determinado pela razão entre o arco $\widehat{AB}$ a ser medido e um arco unitário $u$ da mesma circunferência. Simbolicamente temos:
\begin{equation}
\alpha = \frac{\widehat{AB}}{u}
\end{equation}

Definição $1$: Arco de circunferência

Arco de circunferência é cada uma das duas partes em que uma circunferência fica dividida por dois pontos. assim, sendo $A$ e $B$ dois de seus pontos, eles a dividem em duas partes:

 

Se os pontos coincidem, teremos arco nulo ou arco de uma volta.

Grau

Foi convencionada a divisão da circunferência em $360$ arcos congruentes. Cada um desses arcos foi chamado de arco de um grau $(1º)$. Cada arco de $1º$ foi dividido em $60$ sub-arcos congruentes e cada um desses sub-arcos recebeu o nome de minuto de grau $(1^\prime)$. E cada arco de minuto de grau foi sub-dividido em outros $60$ arcos congruentes dando origem ao arco de segundo de grau $(1^{\prime \prime}$). Um exemplo dessa notação é $30º 12^\prime 15^{\prime \prime}$.

Em problemas de nosso cotidiano, minutos e segundos de grau não são muito utilizados, mas em medições técnicas e em astronomia, seu uso é essencial. Assim:
\begin{equation}
1º = 60^\prime \Rightarrow 1^\prime = 60^{\prime \prime} \Rightarrow 1º = 3600^{\prime \prime}
\end{equation}

Definição $2$: Grau

Grau é o arco unitário equivalente a $1/360$ da circunferência que o contém:

Radiano

Seja uma circunferência de centro $O$ e raio $r$ e seja $\ell$ o comprimento de um arco de circunferência com medida de ângulo central igual a $\alpha$.

Dizemos que um arco mede $1$ radiano $(1\:\text{rad})$ se o seu comprimento $\ell$ for igual ao comprimento do raio $r$. Assim, a medida do ângulo central também será de $1$ radiano.



Definição $3$: Ângulo central

Ângulo central de uma circunferência é o ângulo que tem o vértice no centro $O$ da circunferência.



Então, para sabermos a medida de um arco ou ângulo central correspondente, em radianos, calculamos quantas vezes esse arco de comprimento $\ell$ contém a medida do raio $r$. Obtemos dividindo $\ell$ por $r$:
\begin{equation}
\alpha = \frac{\ell}{r}
\end{equation}
Se $\ell$ é o arco de uma volta, então $\ell$ é o comprimento da circunferência $C=2\pi r$:
\begin{equation}
\alpha = \frac{\ell}{r} = \frac{2 \pi r}{r} = 2\pi \: \text{rad}
\end{equation}
Assim, a circunferência é um arco de $2\pi \: \text{rad}$ e o ângulo central de uma volta mede $2\pi \: \text{rad}$. E como o ângulo de uma volta tem $360º$, então $2\pi \: \text{rad}$ equivale a $360º$.

Definição $4$: Radiano

Radiano é o arco cujo comprimento é igual ao comprimento do raio da circunferência que o contém.


Comprimento de uma arco de circunferência

Seja uma circunferência de centro $O$ e raio $r$, cujo ângulo central de um arco de comprimento $\ell$ corresponde em radianos mede $\alpha$. Da relação $(4)$ concluímos que:
\begin{equation}
\ell = \alpha \cdot r
\end{equation}
onde $\ell$ é o comprimento do arco, $r$ é o raio e $\alpha$ é a medida do ângulo central em radianos.

Exemplos

$1)$ Uma pista circular de atletismo tem diâmetro de $50m$. Calcular a distância percorrida por um atleta após dar $6$ voltas completas nesta pista.

Resolução: Como o diâmetro é de $50m$, o raio mede $25m$ e o comprimento da pista é:
\begin{equation*}
C=2\pi r=2\pi \cdot 25=50\pi \cong 157m
\end{equation*}
Como foram $6$ voltas, basta multiplicarmos o resultado obtido por $6$. A distância percorrida foi de $157\cdot 6=942$.

$2)$ Converter as medidas de ângulos:

$a)$ $270º$ em radianos

Como $360º=2\pi \: \text{rad}$, então $180º=\pi \: \text{rad}$. Usamos este valor como referência na regade três:
\begin{matrix}
\pi \: \text{rad}& = & 180º\\
 x & = & 270º
\end{matrix}
Resolvendo, encontramos $\displaystyle x=\frac{3}{2} \pi \: \text{rad}$

$b)$ $2/3 \pi \: \text{rad}$ em graus
\begin{matrix}
\pi \: \text{rad}& = & 180º\\
 2/3 \pi \: \text{rad} & = &x
\end{matrix}
Resolvendo, encontramos $x=120º$

$c)$ $37º30^\prime$ em radianos

Primeiro convertemos $37º30^\prime$ em segundos de grau:
\begin{equation*}
37º30^\prime = 37 \cdot 60^\prime + 30^\prime = 2250^\prime
\end{equation*}
E agora convertemos $180º$ em minutos de grau, obtendo $10800^\prime$.

Então fazemos:
\begin{matrix}
10800^\prime& = & \pi \: \text{rad}\\
2250^\prime & = &x
\end{matrix}
Resolvendo, encontramos $\displaystyle x=\frac{5}{24} \pi \: \text{rad}$

$d)$ $\pi/16 \: \text{rad}$ em graus
\begin{matrix}
\pi \: \text{rad}& = & 180º\\
 \pi/16 \: \text{rad} & = &x
\end{matrix}
Resolvendo, encontramos $\displaystyle x=\frac{180º}{16}=11,25º$. Podemos escrever:
\begin{equation*}
x=11,25º = 11º + 0,25\cdot 60^\prime=11º15^\prime
\end{equation*}

$e)$ $1$ radiano em graus
\begin{matrix}
\pi \: \text{rad}& = & 180º\\
 1 \: \text{rad} & = &x
\end{matrix}
Resolvendo, encontramos $\displaystyle x=\frac{180º}{\pi}\cong 57,2957795º$, ou $x\cong 57º19^\prime 29^{\prime \prime}$

$3)$ As circunferências da figura abaixo são concêntricas, sendo $r_1=3\:cm$, $r_2=8\: cm$ e $\ell_2=40\: cm$. Calcular: $a)$ o ângulo $\alpha$ em radianos e $b)$ o arco $\ell_1$.



Resolução:

$a)$ $\displaystyle \alpha = \frac{\ell_2}{r_2}=\frac{40}{8}=5\: \text{rad}$

$b)$$\displaystyle \alpha = \frac{\ell_1}{r_1} \Rightarrow s_1=\alpha r_1=5\cdot 3= 15\:cm$

Referências

[1] Matemática V. Único - Facchini
[2] Matemática V. Único - Marcondes, Gentil & Sérgio
[3] Matemática V. 2 Contextos e Aplicações - Dante

Vejam mais:

➊ O Surgimento do Grau na Circunferência
➋ A Astronomia e os Astrônomos da Grécia Antiga
➌ Como Encontrar o Centro de uma Circunferência
 

20/09/2014

Razão de Secção

Consideremos três pontos: $A(x_a,y_a)$, $B(x_b,y_b)$ e $C(x_c,y_c)$, pertencentes a uma mesma reta $r$, oblíqua aos eixos $x$ e $y$ e ainda sendo $B$ e $C$ distintos.

Definição:

A razão $k$ das medidas algébricas de $\overline{AC}$ e $\overline{CB}$ é chamada de razão de secção de $\overline{AB}$ pelo ponto $C$ e é dada por:
\begin{equation}
k=\frac{\overline{AC}}{\overline{CB}},\: C \not\equiv A : \text{e} \: C\not\equiv B
\end{equation}
Dados dois pontos $A$ e $B$ em uma reta $r$, um ponto $C$ pertencente a $r$ pode dividir o segmento $\overline{AB}$ de duas formas diferentes.

$1º)$ O ponto $C$ está entre os pontos $A$ e $B$.



[figura 1]

Analisando a figura acima e aplicando o Teorema de Tales, obtemos as relações:
\begin{equation}
k=\frac{\overline{AC}}{\overline{CB}}=\frac{x_c-x_a}{x_b-x_c}=\frac{y_c-y_a}{y_b-y_c}, \: x_b \neq x_c \: \text{e} \: y_b \neq y_c
\end{equation}
Notamos que se o ponto $C$ estiver entre$A$ e $B$, obteremos $k$ sempre positivo, pois:
\begin{equation}
\left.\begin{matrix}
x_c>x_a \Rightarrow x_c-x_a>0\\
x_b>x_c \Rightarrow x_b-x_c>0
\end{matrix}\right\}
\Rightarrow k>0
\end{equation}

$2º)$ O ponto $C$ não está entre os pontos $A$ e $B$.

Neste caso, pode ocorrer duas situações:


[Figura 2]

Apesar do ponto $C$ estar antes do ponto $A$ ou depois do ponto $B$, para estas duas possibilidades, temos:
\begin{equation}
k=\frac{\overline{AC}}{\overline{CB}}=\frac{x_c-x_a}{x_b-x_c}=\frac{y_c-y_a}{y_b-y_c}
\end{equation}
Na primeira situação temos que:
\begin{equation}
\left.\begin{matrix}
x_c>x_a \Rightarrow x_c-x_a>0\\
x_b<x_c \Rightarrow x_b-x_c<0
\end{matrix}\right\}
\Rightarrow k<0
\end{equation}

Na segunda situação temos que:
\begin{equation}
\left.\begin{matrix}
x_c<x_a \Rightarrow x_c-x_a<0\\
x_b>x_c \Rightarrow x_b-x_c>0
\end{matrix}\right\}
\Rightarrow k<0
\end{equation}
Quando $C$ não estiver entre $A$ e $B$, obteremos $k$ sempre negativo.

Notamos que quando $C \not\equiv A$, $\overline{AC}=0$ e consequentemente $k=0$.

Resumindo:

$\bullet$ Quando $C$ está entre $A$ e $B$, temos $k>0$;
$\bullet$ Quando $C$ não está entre $A$ e $B$, temos $k<0$;
$\bullet$ Quando $C\not\equiv A$, temos $k=0$.

Podemos ainda encontrar a abscissa de $C$ em função de $k$ e das abscissas de $A$ e $B$. Para isso isolamos $x_a$ na relação $(2)$:
\begin{equation}
\begin{matrix}
k=\frac{x_c-x_a}{x_b-x_c}\\
k(x_b-x_c)=x_c-x_a\\
kx_b-kx_c=x_c-x_a\\
x_c+kx_x=x_a+kx_b\\
x_c(1+k)=x_a+kx_b\\
x_c=\frac{x_a+kx_b}{1+k},\: \forall k\neq -1
\end{matrix}
\end{equation}
Analogamente, podemos encontrar a ordenada de $C$ em função de $k$ e das ordenadas de $A$e $B$, obtendo:
\begin{equation}
y_c=\frac{y_a+ky_b}{1+k}, \: \forall k\neq -1
\end{equation}

Exemplo $1$: Dados os pontos $A(-3,1)$ e $B(3,-5)$, determinar o ponto $C$ que divide o segmento $\overline{AB}$nas razões: $a)$ $k=2$ e $b)$ $k=-1/3$.

Resolução:

$a)$ Como conhecemos as coordenadas de $A$ e $B$ e o valor de $k$, basta substituirmos esses valores nas fórmulas $(7)$ e $(8)$:
\begin{equation*}
\left\{\begin{matrix}
x_c &=&\frac{x_a+kx_b}{1+k}&=&\frac{-3+2\cdot 3}{1+2}&=&1 \\
\:\\
y_c &=&\frac{y_a+ky_b}{1+k}&=&\frac{1+2(-5)}{1+2}&=&-3
\end{matrix}\right.
\end{equation*}
Portanto, o ponto procurado é $C(1,-3)$.

$b)$ Como conhecemos as coordenadas de $A$ e $B$ e o valor de $k$, basta substituirmos esses valores nas fórmulas $(7)$ e $(8)$:
\begin{equation*}
\left\{\begin{matrix}
x_{c'} &=&\frac{x_a+kx_b}{1+k}&=&\frac{-3+(-1/3)\cdot 3}{1+(-1/3)}&=&-6 \\
\:\\
y_{c'} &=&\frac{y_a+ky_b}{1+k}&=&\frac{1+(-1/3)(-5)}{1+(-1/3)}&=&4
\end{matrix}\right.
\end{equation*}
Portanto, o ponto procurado é $C'(-6,4)$.

Exemplo $2$: Dados os pontos $A(1,2)$ e $C(2,6)$ sobre uma reta $r$, determinar as coordenadas do ponto $B$ sobre a reta $r$, tal que $\overline{AB}=2 \overline{BC}$.

Resolução:
\begin{matrix}
x_b-x_a=2(x_c-x_b)\\
x_b-x_a=2x_c-2x_b\\
3x_b=2x_c+x_a\\
3x_b=2\cdot 2+1\\
3x_b=5\\
x_b=\frac{5}{3}
\end{matrix}

Analogamente, encontramos a coordenada $y_b$:
\begin{matrix}
y_b-y_a=2(y_c-y_b)\\
y_b-y_a=2y_c-2y_b\\
3y_b=2x_c+y_a\\
3y_b=2\cdot 6+2\\
3y_b=14\\
y_b=\frac{14}{3}
\end{matrix}
Portanto, o ponto procurado é $\displaystyle B\left(\frac{5}{3}, \frac{14}{3}\right)$.

Referências:

[1] Matemática - Facchini

Veja mais:


➊ Distância de um Ponto a uma Reta 
➋ Distância Entre Dois Pontos no Plano
➌ Teorema da Base Média de um Triângulo
 

Redes Sociais

Arquivo do Blog