15/08/2015

Resolução da integral $\displaystyle \int \frac{1}{x^2+a^2}dx$

Nesta postagem, vamos provar que:
\begin{equation*}
\int \frac{1}{x^2+a^2}\ dx = \frac{1}{a}\text{arctg}\left(\frac{x}{a}\right) + C
\end{equation*}
onde $a$ é uma constante, tal que $a \in \mathbb{R}^\ast$, sendo $x^2 + a^2 \neq 0$.



Seja a integral:
\begin{equation*}
I = \int \frac{1}{x^2+a^2}\ dx
\end{equation*}
Fatorando $a^2$ no denominador do integrando:
\begin{equation*}
I = \int \frac{1}{\displaystyle a^2\left(\frac{x^2}{a^2}+1\right)}\ dx
\end{equation*}
Fatorando as constantes:
\begin{equation*}
I = \frac{1}{a^2} \displaystyle \int \frac{1}{\displaystyle \frac{x^2}{a^2}+1}\ dx
\end{equation*}
Para o integrando, fazemos as substituição $\displaystyle u = \frac{x}{a}$. Assim, $\displaystyle du = \frac{1}{a}\ dx$ e $dx = a\ du$. Assim:
\begin{equation*}
I = \frac{1}{a^2} \int \frac{1}{u^2 + 1}\ a\ du\\
\ \\
I = \frac{1}{a}\int \frac{1}{u^2 + 1}\ du
\end{equation*}
A integral de $\displaystyle \frac{1}{u^2 + 1}$ é $\text{arctg}(u)$:
\begin{equation*}
I = \frac{1}{a}\text{arctg}(u) + C
\end{equation*}
Mas $\displaystyle u = \frac{x}{a}$, logo:
\begin{equation*}
I = \frac{1}{a}\text{arctg}\left(\frac{x}{a}\right) + C
\end{equation*}

Exemplo:

Calcular a área sob a curva $\displaystyle f(x) = \frac{1}{x^2+4}$ compreendida no intervalo $[0,2]$.


Pela demonstração acima, temos que:
\begin{equation*}
\int \frac{1}{x^2+a^2}\ dx = \frac{1}{a} \text{arctg}\left( \frac{x}{a}\right)
\end{equation*}
Reescrevendo a função $f(x)$ como:
\begin{equation*}
f(x) = \frac{1}{x^2+2^2}
\end{equation*}
temos que $a=2$. Assim, a integral acima fica:
\begin{equation*}
\int \frac{1}{x^2+2^2}\ dx = \frac{1}{2} \text{arctg}\left( \frac{x}{2} \right)
\end{equation*}
Para encontrarmos a área sob a curva no intervalo solicitado, fazemos:
\begin{equation*}
A = \int_0^2 \frac{1}{x^2+2^2}\ dx = \left[ \frac{1}{\displaystyle \text{arctg} \left(\frac{x}{2}\right)} \right]_0^2\\
\ \\
A = \frac{1}{2} \text{arctg}\left(\frac{2}{2}\right) - \frac{1}{2} \text{arctg}\left(\frac{0}{2}\right)\\
\ \\
A = \frac{1}{2}\text{arctg}(1) - \frac{1}{2}\text{arctg}(0)
\end{equation*}
O arco cuja tangente vale $1$ é o arco de $45°$ ou $\pi/4$ e o arco cuja tangente vale $0$ é o arco de $0^°$. Assim:
\begin{equation*}
A = \frac{1}{2} \ \cdot \ \frac{\pi}{4} = \frac{\pi}{8} u.a.
\end{equation*}
Resposta: A área sob a curva $\displaystyle f(x)=\frac{1}{x^2+a^2}$ compreendida no intervalo $[0,2]$ vale $\pi/8$ unidades de área.



 Veja mais:

Lista de resolução de integrais
Integração por substituição
Integração por partes



0 Comentários:

Postar um comentário

Por favor, leiam antes de comentar:

▪ Escreva um comentário apenas referente ao tema;

▪ Para demais, utilize o formulário de contato;

▪ Comentários ofensivos ou spans não serão publicados;

▪ Desde o dia 23/07/2013, todos os comentários passaram a ser moderados. Para maiores detalhes, veja a nota de moderação aqui;

▪ É possível escrever fórmulas em $\LaTeX$ nos comentários deste blog graças a um script da Mathjax. Para fórmulas inline ou alinhadas à esquerda, escreva a fórmula entre os símbolos de $\$$; Para fórmulas centralizadas, utilize o símbolo duplo $\$\$$.

Por exemplo, a^2 + b^2 = c^2 entre os símbolos de $\$\$$, gera:
$$a^2+b^2=c^2$$
▪ Para visualizar as fórmulas em $\LaTeX$ antes de publicá-las, acessem este link.

Redes Sociais

Arquivo do Blog

Related Posts Plugin for WordPress, Blogger...