14/06/2015

O teorema da corda quebrada de Arquimedes

O matemático árabe Abul Raihan al Biruni atribui a Arquimedes, uma elegante proposição geométrica, chamada teorema da corda quebrada o qual enunciaremos abaixo:


Teorema (Arquimedes):

Se $AB$ e $BC$ compõem uma corda quebrada $ABC$, onde $BC > AB$ e se $M$ é o ponto médio do arco $A\widehat{B}C$, então o pé $F$ da perpendicular de $M$ sobre $BC$ é o ponto médio da corda quebrada.

Demonstração:

Na figura acima, provaremos que:
\begin{equation*}
AB + BF = FC = \frac{AB+BC}{2}
\end{equation*}
Desde que $AB < BC$ existe um ponto $E$ sobre $BC$ tal que $EC = AB$.

Por hipótese, $M$ é o ponto médio do arco $A\widehat{M}B$, de modo que $AM = MC$, pois cordas de arcos congruentes são congruentes. Além disso, $\hat{A} = \hat{C}$, pois são ângulos de um mesmo arco $\hat{BM}$. Sendo $EC = AB$, segue que $\triangle ABM \simeq \triangle CEM$.

Desta congruência desses triângulos, segue que $BM = ME$ o que prova que o $\triangle MBE$ é isósceles. Sendo $MF$ sua altura, então $\triangle BMF \simeq EMF$, pois $B\hat{F}M = E\hat{F}M = 90^{\circ}$, $MF = MF$ e $BM = ME$. Assim, $BF = FE$, de modo que
\begin{equation*}
AB + BF = EC + FE = FC
\end{equation*}
Logo,
\begin{equation*}
AB + BC = (AB + BF) + FC = 2FC \quad \Rightarrow FC = AB + BF = \frac{AB+BC}{2}
\end{equation*}

Consequência:

Se o arco $\widehat{MC} = 2\alpha$ e o arco $\widehat{BM} = 2\beta$, então
\begin{equation}
\sin(\alpha - \beta) = \text{sen} (\alpha) \cos (\beta) - \text{sen} (\beta) \cos (\alpha)
\end{equation}
e
\begin{equation}
\sin(\alpha + \beta) = \text{sen} (\alpha) \cos (\beta) + \text{sen} (\beta) \cos (\alpha)
\end{equation}
Na figura abaixo, $ABC$ é a corda quebrada, $OC = OB = OM = r$.



No $\triangle OGM$,
\begin{equation*}
\sin \alpha = \frac{MG}{OR} = \frac{MC/2}{r} \Longrightarrow MC = 2r \text{sen}( \alpha)
\end{equation*}
e no $\triangle OBH$,

No $\triangle CFM$ retângulo em $F$, $M\hat{C}F = B\hat{O}M/2$, ou seja, $M\hat{C}F = \beta$. Assim,
\begin{equation*}
FC = 2r \text{sen} (\alpha) \cos (\beta)
\end{equation*}
Analogamente, no triângulo retângulo $BFM$, temos $M\hat{B}F = M\hat{O}C/2 = \alpha$. Assim
\begin{equation*}
\cos (\alpha) = \frac{BF}{BM} \Longrightarrow BF = 2r \text{sen} (\beta) \cos (\alpha)
\end{equation*}
Pelo teorema da corda quebrada, $AB + BF = FC$, de modo que
\begin{equation*}
AB = FC - BF \Longrightarrow  AB = 2r(\text{sen} (\alpha) \cos (\beta) - \text{sen}(\beta) \cos (\alpha))
\end{equation*}
No $\triangle BOI$ retângulo em $I$,
\begin{equation*}
\text{sen} (\gamma) = \frac{BI}{OB} = \frac{AB/2}{r}  \Longrightarrow AB = 2r \text{sen} (\gamma)
\end{equation*}
Mas o arco $\widehat{AM} = \widehat{MC}$, donde segue que $2\gamma + 2\beta = 2\alpha \Longrightarrow \gamma = \alpha - \beta$. Logo:
\begin{equation*}
AB = 2r \text{sen}(\alpha - \beta)  \Rightarrow  2r \text{sen}(\alpha - \beta) = 2r(\text{sen} (\alpha) \cos (\beta) - \text{sen} (\beta) \cos (\alpha))
\end{equation*}
donde segue a identidade $(1)$.

Para provar a identidade $(2)$, sabemos do teorema da corda quebrada que $BF + FC = BC$ e que o arco $\widehat{BC} = 2\alpha + 2\beta = 2(\alpha + \beta)$ . Assim,
\begin{equation*}
\text{sen}(\alpha + \beta) = \text{sen}\left(\frac{\widehat{BC}}{2}\right) = \frac{BC/2}{r} \Longrightarrow BC = 2r \text{sen}(\alpha + \beta)
\end{equation*}
Logo,
\begin{equation*}
2r \text{sen}(\alpha + \beta) = BC = BF + FC = 2r \text{sen}(\alpha) \cos (\beta) + 2r \text{sen} (\beta) \cos (\alpha)
\end{equation*}
donde segue a demonstração.

*Este artigo é uma republicação. O link do artigo original encontra-se nas referências.

Referências:

[1] O teorema da corda quebrada de Arquimedes no blog Fatos Matemáticos

Veja mais:

O cálculo no Japão
O corpus arquimediano
Teorema do ângulo inscrito



Siga também o blog pelo canal no Telegram.

Compartilhe esse artigo:


Achou algum link quebrado? Por favor, entre em contato para reportar o erro.
Leia a política de moderação do blog. Para escrever em $\LaTeX$ nos comentários, saiba mais em latex.obaricentrodamente.com.

Postar um comentário

Whatsapp Button works on Mobile Device only

Pesquise no blog