\begin{equation*}
\int \cos(ax)dx = \frac{\text{sen}(ax)}{a}+C
\end{equation*}
onde $a \in \mathbb{R}$ e $a\neq 0$.
Seja a integral:
\begin{equation*}
I = \int \cos(ax)dx
\end{equation*}
Para o integrando $\cos(ax)$, fazemos a substituição $u=ax$. Assim, $du=a\ dx$ e $\displaystyle dx = \frac{1}{a}du$:
\begin{equation*}
I = \frac{1}{a} \int \cos(u) du
\end{equation*}
A integral de $\cos(u)$ é $\text{sen}(u)$:
\begin{equation*}
I = \frac{1}{a} \text{sen}(u) + C
\end{equation*}
Mas $u=ax$. Logo:
\begin{equation*}
I = \frac{\text{sen}(ax)}{a} + C
\end{equation*}
Exemplo:
Sejam $f(x)=\cos(x)$ e $g(x)=\cos(3x)$. Calcular a área hachurada.Resolução: A área hachurada no gráfico acima é dada pela diferença entre a área de $f(x)$ no intervalo de $0$ a $\pi/2$ e a área de $g(x)$ no intervalo de $0$ a $\pi / 4$:
\begin{equation*}
A = \int_0^{\pi/2} f(x)dx - \int_0^{\pi/4} g(x)dx\\
\ \\
A = \int_0^{\pi/2} \cos(x)dx - \int_0^{\pi/4} \cos(3x)dx
\end{equation*}
A integral de $\cos(ax)$ é $\displaystyle \frac{\text{sen}(ax)}{a}$. Assim:
\begin{equation*}
A = \left[ \text{sen}(x) \right]_0^{\pi/2} - \left[ \frac{\text{sen}(3x)}{3} \right]_0^{\pi / 4}\\
\ \\
A = \left[ \text{sen}\left(\frac{\pi}{2} \right) - \text{sen}(0) \right] - \left[ \frac{\text{sen}\left(\frac{3\pi}{4}\right)}{3} - \frac{\text{sen}(0)}{3} \right] \\
\ \\
A = \left[ 1 - 0 \right] - \left[ \frac{\sqrt{2}}{6} - 0 \right]\\
\ \\
A = 1 - \frac{\sqrt{2}}{6} \\
\ \\
A \approx 0,764298
\end{equation*}
Resposta: A área na porção hachurada do gráfico acima é $0,764298\ u.a.$.
Veja mais:
Lista de resolução de integraisIntegração por substituição
Integração por partes
Postar um comentário