21/10/2013

A Mediana de Euler

Leonhard Euler $(1707-1783)$ foi um dos maiores matemáticos (ou o maior) do século $XVIII$, pois sua obra é impressionante, pela quantidade e pela diversidade. Dentre algumas áreas em que Euler contribuiu, podemos citar a Álgebra, Teoria dos Números, Trigonometria, Cálculo Infinitesimal, Óptica e Geometria. Desta última, especificamente em Geometria Plana, Euler também deixou sua marca num estudo sobre quadriláteros.

Quadriláteros são polígonos que possuem quatro lados, cuja soma de seus ângulos internos mede $360º$. Euler encontrou uma relação nos quadriláteros que diz respeito ao segmento que une suas diagonais e a base média do quadrilátero.

A mediana de Euler

Definição:

Mediana de Euler é o segmento que une os pontos médios das diagonais de um trapézio e fica localizada sobre sua base média, expressa por:
\begin{equation}
m_E=\frac{b-b'}{2}
\end{equation}
onde $m_E$ é a Mediana de Euler e $b$ e $b'$ são as bases maior e menor, respectivamente, do trapézio.

Ao traçarmos as duas diagonais do trapézio, estas cortam a base média nos pontos $P$ e $Q$. A Mediana de Euler é o segmento $\overline{PQ}$.

A demonstração não é muito complicada, pois remete a temas já estudados, como a base média de um triângulo e a base média de um trapézio.

Do triângulo $ABD$, temos que sua base média é o segmento $\overline{MQ}$, dada por:
\begin{equation}
\overline{MQ}=\frac{\overline{AB}}{2}=\frac{b}{2}
\end{equation}
E do triângulo $ACD$, temos que sua base média é o segmento $\overline{MP}$, dada por:
\begin{equation}
\overline{MP}=\frac{\overline{CD}}{2}=\frac{b'}{2}
\end{equation}
A Mediana de Euler é o segmento $\overline{PQ}$, que pode ser expresso por:
\begin{equation}
\overline{PQ}=\overline{MQ}-\overline{MP}
\end{equation}
Substiruindo $(2)$ e $(3)$ em $(5)$, obtemos:
\begin{equation}
\overline{PQ}=m_E=\frac{b}{2}-\frac{b'}{2}=\frac{b-b'}{2}
\end{equation}

Exemplo:

Seja o trapézio $ABCD$ de bases $b=\overline{AB}=12cm$ e $b'=\overline{CD}=8cm$. Calcular a Mediana de Euler.
Aplicando a fórmula dada em $(5)$, temos que:
$$m_E=\frac{b-b'}{2}=\frac{12-8}{2}=2cm$$

Links para este artigo:


Veja mais:



Softwares utilizados:

  • Inkscape

Siga também o blog pelo canal no Telegram.

Compartilhe esse artigo:



Achou algum link quebrado? Por favor, entre em contato para reportar o erro.
Leia a política de moderação do blog. Para escrever em $\LaTeX$ nos comentários, saiba mais em latex.obaricentrodamente.com.

Um comentário:

  1. Olá Multiplicador, seja feliz!

    Antes de qualquer coisa, pedimos desculpas pela nossa ausência, é que fazem alguns meses que nosso tempo tem sido muito, mais muito curto mesmo. Porém, o projeto E.M. continua seguindo firme, graça a você, Kleber, que tem nos ajudado bastante para o crescimento de toda a família, muito obrigado.

    Parabéns, você e seu blog continuam sendo destaques no Educadores Multiplicadores por ter contribuído para a educação de nosso país.

    Link abaixo:
    http://www.educadoresmultiplicadores.com.br/2013/11/educadores-multiplicadores-do-mes-de.html

    Estamos de banners novos, e também, caso queira pegar o selo que caracteriza o destaque, fique a vontade. Lembramos que adicionar o selo do “Top Caneta de Ouro” e/ou “Top comentarista” é opcional.

    O EDUCADORES MULTIPLICADORES e o MARQUECOMX agradecem pela amizade e confiança em nosso projeto, que é de todos nós.

    Abraços, fiquemos na Paz de Deus e até breve.

    IRIVAN

    ResponderExcluir

Whatsapp Button works on Mobile Device only

Pesquise no blog